<name> Class: Honors Geometry Date: 9/19/06 Topic: Lesson 2-1 (Conditional Statements)

Conditional Statement	Also know as an if-then statement Two parts: hypothesis and conclusion if hypothesis then conclusion
Example	If it is raining then water is falling from the sky <u>Hypothesis</u> : it is raining <u>Conclusion</u> : water is falling from the sky
Example	pg.68, Check Understanding 1 If $y - 3 = 5$ then $y = 8$ <u>Hypothesis</u> : $y - 3 = 5$ <u>Conclusion</u> : $y = 8$
Writing a conditional	Break statement into two parts Identify the subject of the first part and make a general reference to it Use the first as the hypothesis and second as conclusion
Example	pg. 71, #12 All obtuse angles have measure greater than 90 1^{st} part: all obtuse angles \rightarrow subject is obtuse angles \rightarrow an angle is an obtuse angle 2^{nd} part: have a measure greater than 90 If an angle is an obtuse angle then it has a measure greater than 90
Truth value of a conditional	true or false Is the conditional true or is it false? Answer to this question is the truth value
Proving a conditional false	Find a counter-example

<name> Class: Honors Geometry Date: 9/19/06 Topic: Lesson 2-1 (Conditional Statements)

Example	 pg 72, #18 If you play a sport with a ball and a bat then you are playing baseball softball and cricket both use a ball and a bat statement is false
Venn Diagrams	Way to visualize a conditional statement Hypothesis is the inner circle Conclusion is the outer circle
Example	What conditional does this represent? Dogs Cocker Spaniels If something is a cocker spaniel then it is a dog
Example	pg. 72, #20 Make a Venn diagram for this conditional: If you play the flute then you are a musician Musicians Flute Players

<name> Class: Honors Geometry Date: 9/19/06 Topic: Lesson 2-1 (Conditional Statements)

Converse of a conditional	Swap the hypothesis and conclusion Conclusion may not be true Always check truth value of both
Example	 p.72, #28 <u>Conditional</u>: If a point is in the 1st quadrant then its coords are positive <u>Converse</u>: If the coords of a point are positive the it is in the 1st quadrant <u>Truth values</u>: Conditional: true Converse: true
Example	<u>Conditional</u> : If it is raining then water is falling fm the sky <u>Converse</u> : If water is falling fm the sky then it is raining <u>Truth values</u> : Conditional: true Converse: false (counter-example: water fm hose)
Symbols	$p \rightarrow q$ means if p then q Often see: Let p: The point is in the 1 st quadrant Let q: The point's coordinates are positive $p \rightarrow q$ (the conditional) $q \rightarrow p$ (the converse)
Postulates as conditionals	Postulate 1-2 (as a statement) Two intersecting lines meet in exactly one pointAs a conditional: If two lines intersect then they meet in exactly one point.